Samstag , 25 September 2021

Das digitale Magazin für Deutschland

AI Computer Pixabay

KI-basiertes Warnsystem soll vor Starkregen und urbanen Sturzfluten schützen

Extreme Wetterereignisse wie Starkregen und Sturzfluten nehmen in Folge des Klimawandels zu. Vor allem in urbanen Gebieten, Ruhrgebietsstädten wie Gelsenkirchen, kommt es schnell zur Überlastung der Kanalnetze, zu Überflutungen von Unterführungen. Damit sind Rettungswege, z. B. für die Feuerwehr, blockiert. Hinsichtlich Vorwarnzeit, geographisch genauer Verortung und zu erwartender Niederschlagsmenge sind Starkregenereignisse kaum adäquat vorherzusagen. Umso wichtiger ist eine technische und inhaltliche Weiterentwicklung der Vorhersagemodelle. Hier setzt das BMBF-Verbundforschungsprojekt „KIWaSuS“ an.

KIWaSuS steht für „KI-basiertes Warnsystem vor Starkregen und urbanen Sturzfluten“. Ziel des Projektes: die Vorwarnzeiten vor Sturzfluten in den Städten sind signifikant zu erhöhen, besser zu lokalisieren und gleichzeitig wichtige Informationen für das kommunale Krisenmanagement bereitzustellen. Dazu soll eine intuitive, digitale Karte erstellt werden, die in Abhängigkeit des bevorstehenden Starkregenereignisses bereits Ort und Ausmaß der resultierenden Überflutung frühzeitig und zuverlässig darstellt. Damit können Akteure vor Ort sinnvoll unterstützt werden: Einsatzpläne für Feuerwehr, Katastrophenschutz und Kanalnetzbetreiber können so individuell an das Ereignis angepasst werden. Bürger können rechtzeitig gewarnt werden und eigene Schutzmaßnahmen einleiten.

Erschwerend in den Ruhrgebietsstädten kommt die Trennung ganzer Stadtteile durch Unterführungen aufgrund von zahlreichen Autobahnen und Bahntrassen hinzu. Vergangene Starkregenereignisse haben gezeigt, dass sich nicht nur Geländetiefpunkte wie Unterführungen zu Hindernissen entwickeln, sondern sich auch ganze Straßenzüge innerhalb kürzester Zeit in reißende Ströme verwandeln können. Der Bedarf für ein effizientes Echtzeitwarnsystem ist nicht auf Gelsenkirchen begrenzt, sondern deutschlandweit gegeben.

In KIWaSuS soll KI dazu eingesetzt werden, Zusammenhänge und Muster bei der Entstehung von Starkregenzellen zu erlernen. Andererseits soll KI verwendet werden, um das Verhältnis zwischen Niederschlag und dem daraus resultierenden Abfluss zu erlernen. So sollen Überlastungen des Kanalnetzes und Überschwemmungen besser zu beschreiben sein.

Voraussetzung für den effizienten Einsatz von KI ist ein intensiver Trainingsprozess, der eine große Datenbasis benötigt. Die Daten werden aus verschiedenen Quellen erhoben: Für den Niederschlag werden Messdaten durch die Kommunen und Wasserverbände bereits seit mehreren Jahrzehnten erfasst. Für den niederschlagsbedingten Abfluss hingegen liegen derzeit kaum Daten vor. Hier werden physikalisch basierte Abflussmodelle genutzt, um künstliche Trainingsdaten zu generieren. Darüber hinaus soll ein innovatives Sensorsystem zur Nachverdichtung bzw. Ergänzung der Datenbasis errichtet werden. Sämtliche Datenströme sollen in einer zentralen Datenplattform zusammengefügt und durch entsprechende Transformationsprozesse in ein ML-geeignetes Format gebracht und für die Vorhersagemodelle zur Verfügung gestellt werden.

Beteiligt an diesem Verbundprojekt sind die Unternehmen neusta sd west, Gelsenwasser AG, Abwassergesellschaft Gelsenkirchen, das Institut Wasserbau- und Wasserwirtschaft der Universität Duisburg-Essen und die Institute Bauingenieurwesen sowie Mess- und Sensortechnik der Hochschule Ruhr West. Konsortialführer ist Prof. Dr. Markus Quirmbach vom Institut Bauingenieurwesen. Anforderungen und Daten liefern die Feuerwehr Gelsenkirchen, das Landesamt für Natur, Umwelt und Verbraucherschutz und die Emschergenossenschaft. Das Projekt läuft bis März 2024. Gefördert wird es mit ca. 1,5 Mio. Euro aus der BMBF Förderrichtlinie: „Künstliche Intelligenz in der zivilen Sicherheitsforschung“ im Programm „Forschung für die zivile Sicherheit 2018 bis 2023“.

Quelle

Weiterlesen!

Zwei neue Digitalisierungs-Professuren an der Fachhochschule Erfurt

Digitale Technologien und Verfahren sollen künftig noch stärker in Lehre und Forschung der Thüringer Hochschulen …